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Abstract 

 
 
Because land surface emissivity (ε) had not been reliably measured, global climate 

model’s (GCM) land surface schemes conventionally simply set this parameter as 

constant, for example 1 as in the National Oceanic and Atmospheric Administration 

(NOAA) National Centers for Environmental Prediction (NCEP) model and 0.96 for bare 

soil as in the National Center for Atmospheric Research (NCAR) Community Land 

Model (CLM2). This is so-called “constant-emissivity assumption”. Accurate broadband 

emissivity data are needed as a model input to better simulate land surface climate. We 

demonstrate in this paper that the assumption of the constant emissivity induces errors in 

modeling the surface energy budget, especially over large arid and semi-arid areas where 

ε is far smaller than unity. One feasible solution to this problem is to apply the satellite-

based broadband emissivity into land surface models. 

The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument has routinely 

measured spectral emissivities (ελ) in six thermal infrared bands. The empirical 

regression equations have been developed in this study to convert these spectral 

emissivities to broadband emissivity (ε) required by land surface models. The observed 

emissivity data show strong seasonality and land-cover dependence. Specifically, 

emissivity depends on surface cover type, soil moisture content, soil organic composition, 

vegetation density and structure. For example, broadband ε is usually around 0.96-0.98 
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for densely vegetated areas (leaf area index LAI>2), but it can be lower than 0.90 for bare 

soils (e.g., desert). To examine the impact of variable surface broadband emissivity, we 

conducted sensitivity studies using offline CLM2 and coupled NCAR Community 

Atmosphere Model CAM2/CLM2. These sensitivity studies illustrate that large impacts 

of surface ε occur over deserts, with change up to 1-2°C in ground temperature, surface 

skin temperature, and 2m surface air temperature,  as well as  evident changes in sensible 

and latent heat fluxes.  
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1. Introduction 
 
Emissivity (ε) is the ratio of energy emitted from a natural material to that from an ideal 

blackbody at the same temperature. Accurate surface ε is desired in land surface models 

for better simulations of surface energy budgets from which skin temperature in the 

model is calculated (Jin et al. 1997). Lacking global ε observations, the first 

comprehensive land surface models coupled to general circulation models (GCMs) 

simply assumed ε as 1 (Dickinson et al. 1986; Sellers et al. 1987). Later many land 

surface models adopted this assumption by setting ε as 1 or constants close to 1. 

Although the constant-ε 1assumption provides first-order approximation, it induces errors 

in simulating surface-upward longwave radiation and, consequently, radiative energy 

redistribution. Although constant-ε assumption may be valid for most vegetated areas 

where ε is close to unity, it is not true for arid and semi-arid areas. For example, ε = 0.7-

0.8 were observed over the Saharan deserts at 9µm due to large quartz levels there 

(Rowntree 1991; Prabhakara and Dalu 1976), and thus assuming ε=1 may result in an 

error of about 15Wm-2 in the net longwave radiation  annually  given the fact that the 

desert surface emissivity is 0.90 in many areas from MODIS observation and the annual 

                                                 
1 Here the "constant-ε" assumption means  two-fold problem.  First, ε is assumed to be 
constant when it  actually varies in space and time. Second, the ε is assumed to be near 
one, which is incorrect for certain surfaces.    
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net longwave  radiation is about 160Wm-2  (See Figure 1 and Eq. (8)). The instantaneous 

error may be higher when the surface net radiation is above the annual mean.  

In Community Land Model version 2.0, the land surface model of the National Center for 

Atmospheric Research (NCAR CLM2), there are three surface emissivities: bare soil 

emissivity, canopy emissivity (εc), and snow emissivity. Except that εc is calculated very 

simply as a function of leaf area index (LAI), the other emissivity values are prescribed 

as 0.96 for soil and 0.97 for snow, respectively. Therefore, emissivity treatment  is still a 

problem in CLM2 when soil emissivity is set as constant since this variable can shift 

more than 10% around the globe from MODIS observations we present below.  

The goal of this work is to examine whether the constant-ε assumption currently used in 

land surface models is realistic, and to study the impact of ε on land surface modeling. To 

achieve that, we employed two methods. First, the emissivity products from MODIS 

(Moderate-Resolution Imaging Spectroradiometer) were analyzed to demonstrate the 

global distribution, seasonal variation, and ε-LAI relationship. Second, the NCAR offline 

CLM2 and NCAR Community Atmosphere Model coupled with CLM2 (CAM/CLM2) 

were used to conduct a series of sensitivity studies.  

Remotely sensing surface ε is very challenging because of the high heterogeneity of land 

surfaces and the difficulties in removing atmospheric effects (Wan and Li 1997; Liang 

2001, 2003). Furthermore, there is a mismatch between what remote sensing provides 

and what land surface models need: remote sensing measures spectral emissivity (ελ) 
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through channels at  certain wavelength (λ) but land surface models need “broadband” 

emissivity for calculating upward longwave radiation using the Stefan-Boltzmann law. 

Due to atmospheric absorption, only the spectral radiance within the infrared water vapor 

window region (i.e., 8-14µm) is measured by thermal infrared remote sensing. It is these 

measurements that need to be converted into broadband emissivity. In this study, a 

regression equation based on radiative transfer model  is derived to convert MODIS 

spectral emissivities into broadband emissivity. More details are available in Section 2.3.    

In the remaining part of this paper, section 2 describes the properties of emissivity and its 

role in land surface equations. Section 3 introduces the observations and the models used 

in this work. Sections 4 and 5 present results, discussions, and conclusions. 

2. Background 

2.1 Properties of emissivity 

Conceptually, all materials are formed by molecules with atoms bonded together inside 

through molecular bonds. Atoms vibrate at the end of a bond when agitated by light of 

particular wavelength hitting the molecule. In turn, the molecule re-emits the same 

wavelength of light. This is the “absorption and emission” process. Only light in the 

infrared spectrum causes molecular vibration. Since every unique molecule has its own 

characteristic frequency of vibration,  a natural surface emits the infrared light depends 

on surface composition,  namely the emissivity spectrum , is distinct depending on 
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surface composition. Simply put, if the surface is of mixed types, it has different 

emissivities.  

Emissivity is defined as: 

ελ = Eλ/Bλ(T),         (1) 

where Eλ is emitted radiance at wavelength λ and Bλ(T) is blackbody emission at 

wavelength λ and temperature T. Bλ(T) can be calculated from the Planck function. 

Kirchoff’s Law states that the emissivity of an opaque body at thermodynamic 

equilibrium is equal to absorptivity, and therefore based on the conservation of energy, 

the reflectivity Rλ and emissivity is  

Rλ     = 1- ελ,        (2) 

It is difficult to determine the emissivity of an object for at least three reasons: emissivity 

is a surface property, and the surface of an object may change with time; the land surface 

is composed of various objects with different emissivities; and emissivity retrieval from 

remote sensing depends on the surface temperature, but accurate surface temperature is 

difficult to measure. 

Emissivity of bare soil 

The emissivity of natural land surface is determined by soil structure, soil composition, 

organic matter, moisture content and vegetation cover characteristics (Van De Griend and 
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Owe 1993), but does not depend on soil temperature profile or surface temperature. For 

bare soil, the key parameters affecting emissivity are the surface finish, the chemical 

composition, the soil's thermal and mechanical history, and the wavelength at which the 

emissivity is measured (Van De Griend and Owe 1993). Physically, emissivity is 

independent of bare soil temperature, but since thermal infrared radiance measured by 

satellite radiometer includes signals of both temperature and emissivity, emissivity has to 

be separated from temperature (Snyder et al. 1998). 

Emissivity is determined partially by grain sizes of soil and organic content. Nerry et al. 

(1990) reported that the smaller the diameter of soil grain, the higher the emissivity over 

10-14 µm from a sample of SiC sands (see their Figure 7). The decrease of spectral 

contrast with decreasing grain-size diameter is a well-known effect (Logan et al. 1974) in 

a region where surface scattering dominates. 

Land surface models require emissivity integrated over the longwave water vapor 

window region 8-14µm. Therefore, for the purpose of understanding the impact of 

emissivity on model predictions, our study focuses only on this spectral region. Table 1 

presents reference values of emissivity for some materials. It shows that emissivity varies 

significantly with chemical materials; therefore, the soil emissivity of a given sample is 

sensitive to its chemical compositions. Furthermore, environmental effects over the 

history of these chemical components may cause changes in properties (e.g, surface 

roughnessor surface contamination) that affect emissivity (Francois et al. 1997).  
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Emissivity of Canopy  

Εmissivity of canopy, εc, is even more complex than the underlying soil emissivity. 

Single leaf emissivity differs from that of integrated effective canopy emissivity (Fuchs 

and Tanner 1996, Van De Griend and Owe 1993, Francois et al. 1997), because εc is 

determined by the overall structure of the vegetation instead of the flat surface of leaves 

(the “cavity effect”). Cavity effects make εc larger than the single leaf’s ε due to multiple 

internal reflections resulting from canopy geometry structure. For example, ε is from 0.95 

to 0.98 for single leaves but is expected to increase for dense canopy (Fuchs and Tanner 

1966). Idso et al. (1969) reported a leaf emissivity as low as 0.938. It was found that the 

cavity effect becomes significant when the leaves’ proportion exceeds the soil proportion 

(namely, about leaf area index LAI>2). In addition, although different leaves show 

similar spectral reflectances in both visible and near-infrared wavelengths, distinct 

features of emissivity are noticed in the thermal-infrared region. 

The plant species, vegetation density and growth state all affect εc. Using a radiative 

transfer model, Francois et al. (1997) reported that as canopy LAI, the variable 

representing the greenness and density of vegetation from remote sensing,  increases, the 

εc increases --to a limit. Their model finds that LAI profile, namely vegetation vertical 

structure, has little effect on ε. The view angle modifies εc only for off-zenith angles 

greater than 50º. 
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A good review of ε and vegetation index was provided by Van De Griend and Owe 

(1993). Measured over a savanna environment, they found that thermal emissivity was 

highly positively correlated with Normalized Difference Vegetation Index (NDVI) with a 

correlation coefficient as high as 0.94. Their field experiments measured ε = 0.914 for 

bare soil of loamy sand (NDVI=0.157), 0.949 for partly covered open grass (NDVI = 

0.278), 0.958 for long grass (NDVI = 0.276), 0.952 for partly covered shrub with NDVI 

as 0.367, and 0.986 for completely covered shrub when NDVI = 0.727. Following these 

measurements, they developed one logarithmic equation to describe the empirical 

relations between ε and NDVI. Note that their results were based on field experiment and 

only for savanna; the application of their values in land surface model needs further 

verification for other vegetation types. 

There are other factors affecting εc. Dynamic states of vegetation such as growing crops 

and idle crops (bare soil) have distinct ε (Snyder et al. 1998). In addition, water stress, for 

example, could also have some effect on the canopy emissivity (Francois et. al. 1997). 

2.2 Emissivity in land surface model 

The exchanges of momentum, heat, and moisture at the land surface in an atmosphere-

vegetation-soil system are the key physical processes that determine the land surface 

thermodynamics and dynamics. The unique role of ε can be demonstrated in the energy 

balance equation that governs the heat and water exchanges:  
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Rn = SH+LE+G,    (3) 

Rn = S↓-S↑+LW↓-LW↑,   (4) 

LW↑=εσTs
4,         (5) 

 

where SH is sensible heat flux, LE is latent heat flux, and G is the ground heat flux. 

These three processes compete for surface net radiation Rn, which is the downward minus 

upward shortwave and longwave radiation. In Eq. (4), S↓ is downward solar radiation, S↑ 

is reflected solar radiation, LW↓  is downward longwave radiation, and LW↑ is upward 

longwave radiation from the surface. Emissivity and surface skin temperature (Ts) 

determine the upward longwave radiation, or surface emission, following the Stefan-

Boltzmann Law.   

We first theoretically analyze the possible ε effect. To keep the discussion simple, here 

we only analyze the case when the ε=1, for it gives maximum errors.  If ε is set to 1, net 

longwave radiation is: 

LWn
ε=1

 = LW↓- σTs
4,    (6) 

while, in fact, this term should be: 

LWn
ε≠1 = LW↓-ε σTs

4 -(1-ε)LW↓   (7) 

Therefore, the error induced by the unit emissivity assumption is: 
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∆ = LWn
ε≠1

 - LWn
ε=1       

= (σTs
4 - LW↓) (1-ε).                (8) 

                                   A               B  

∆ is the error on net longwave radiation if accurate ε is not taken into account in land 

surface models. Eq. (8) implies two situations when large errors may occur due to 

inaccurate ε: where there are large differences between upward and downward longwave 

radiation (term A), and where the surface ε greatly departs from unit (term B).  

We used the National Oceanic and Atmospheric Administration (NOAA) National 

Centers for Environmental Prediction (NCEP) reanalysis to examine when and where the 

first situations may occur. Figure 1 shows the magnitude of term A of Eq. (8) over the 

globe. These analyses were based on the NCEP reanalysis for July, November and the 

annual mean for the year 2001, respectively. Large net longwave radiation centers are 

shown over desert areas including the Sahara, Australia, southwest North America, and 

the central desert areas of Eurasia. These deserts are associated by hot,  downwelling 

branches of the Hadley circulation. With the displacement of general circulation in 

different seasons, the strength and locations of the net longwave radiation centers vary 

moderately from season to season. For example, the maximum for term A is in the Sahara 

in July but moves to Eurasia in November, with values of 166Wm-2 and 155Wm-2, 

respectively. Meanwhile, as bare soil with little moisture and vegetation, these areas have 
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small ε values that are far from 1; therefore, large ∆ are expected to occur over these 

areas. The Sahara, for instance, may have annual mean ∆ around 15Wm2, given term A 

about 160 Wm2 and emissivity of 0.90 (see section 4). This instaneous error maybe 

higher term A. This ∆ will propagate an error in skin temperature and heat fluxes, as we 

prove later. For non-desert regions, where emissivity is higher and term A is smaller, the 

constant emissivity assumption may be tolerable. We will use model sensitivity studies to 

examine this posssible tolerance in Section 3.    

2.3 Broadband emissivity conversion 

Remote sensing retrieves emissivity from individual spectral bands (i.e., ελ ) while 

GCM’s land surface model needs “broadband” emissivity (i.e., ε). Therefore, a 

conversion from narrowband into broadband is necessary. Outside of the water vapor 

window, LW↓ originates from the levels close to the ground and thus differs little from 

the surface emission. Consequently, only surface radiation at the window region is 

critical for the surface radiation budget (Rowntree 1991, Dickinson personal 

communications). In other words, only window region spectral emissivity needs to be 

taken into account during spectral-broadband emissivity conversion. Note that even in the 

water vapor window, the presence of clouds will increase the downwelling longwave 

above its clear sky value, and thus reduce the delta described by equation (8). 

Nevertheless, for desert and semi-desert regions, clouds effect is ignorable.  
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Figure 2 shows the variation of emissivity as a function of wavelength for soil. Evidently, 

for different samples of soil, ελ is different because of the differing chemical composition 

of the soils. The ελ varies from 0.91 at 9.1µm to 0.98 at 14.5µm. The spectral emissivity 

value in Figure 2 beyond 14.5µm  is not reliable due to the strong atmospheric 

absorption. The large irregular variations with wavelength make it difficult to derive a 

“broadband” ε. In this work, we conducted extensive simulations incorporating thousands 

of surface emissivity spectra, and then derived the regression equations as the function of 

the Moderate Resolution Imaging Spectroradiometer (MODIS) spectral emissivity 

values. Broadband ε should be seen as a first-order approximation for capturing the 

integrated features of ε from MODIS spectral bands. 

The procedure for developing conversion formulae of spectral emissivities to broadband 

emissivity consists of the following steps. First, thousands of measured emissivity spectra 

from different sources (e.g., Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) spectral library,  Salisbury database, US Geological Survey 

spectral library) have been collected. Second, broadband "effective" emissivity is 

calculated using the Planck equation and spectral emissivity spectra. Third, integrating 

these surface spectral emissivity spectra with the sensor spectral response functions leads 

to the simulated MODIS spectral emissivities. Finally, a linear relationship is established 

between the broadband emissivity (ε ) and MODIS spectral emissivities ( iε ) through 

regression analysis: 
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ε8-14 = 0.0281+0.2863ε29+0.4407ε31+0.2399ε32    (10) 

Although MODIS has four bands in 8-12 µm (bands 29-322), not all of them are 

incorporated in the formula above because of their correlation and large uncertainties in 

estimating the spectral emissivity at band 30.  

MODIS has two different algorithms for estimating spectral emissivities (Wan and Li 

1997). One of them is based on land cover information that may determine the spectral 

emissivity in bands 31 and 32 far more accurately than other bands. If only emissivities 

of bands 31 and 32 are used, the formula is 

8 14 31 320.4587 0.5414ε ε ε− = +      (11)  

Nevertheless, the broadband emissivity estimated only from emissivities in MODIS 

bands 31 and 32 (Eq. 11) may not be too accurate, because of lacking information in the 

8-8.7µm spectral range, where emissivities of soils and minerals may vary significantly. 

As a conclusion, we recommend Equations  (10) as a more standard conversion approach. 

In general, uncertainty of spectral band emissivity is 0.001-0.005 for each band (Wan and 

Li 1997). Such uncertainty will likely propagate into the final broadband emissivity 

value. In addition, uncertainty exists using the regression equation to convert spectral 

                                                 
2 Band 29 is 8.400-8.700 µm; band 31 is 10.780-11.280 µm; and band 32 is 11.770-
12.270 µm.  
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band to broadband. Figure 4 is the comparison of 3 band converted ε  (MODIS band 29, 

31 32) and radiative transfer model simulated broadband emissivity.  Our assessment 

show that such uncertainty is about +/-0.005. 

3. Data and Model 

Monthly mean MODIS observations are used to examine the geographical distributions 

of ε. The emissivity values in the Version 4 MODIS Land-Surface 

Temperature/Emissivity product (MOD11B1) at 5km Sinusoidal grids were obtained 

from the MODIS science team for August 2000 and January 2003. Although being the 

best available data, MODIS- emissivity  measurements suffer from certain error sources, 

such as snow surface, clouds cover, or over anonymous high water vapor regions.  In this 

work, we also use the corresponding MODIS land cover and leaf area index (LAI)  to 

demonstrate the dependence of emissivity ε on surface types. 

CLM is the recently released community land surface model for coupling with NCAR 

Community Atmospheric Model CAM (Bonan et al. 2002). CLM, a model developed by 

multiple agencies in a communal effort, is based on previous land surface models, such as 

BATS (Dickinson et al. 1993), with improved parameterizations for surface snow and 

hydrology, interception, surface 2m air temperature, and boundary conditions. We used 

CLM in an offline mode to represent various physical processes among atmospheric-

land-ocean applications over the globe. In addition, we performed offline CLM 
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simulations over Tucson, Arizona, to examine the skin temperature and sensible and 

latent heat fluxes with the standard bare-soil parameterization of emissivity (0.96) and 

with average MODIS-observed bare-soil emissivity (~0.90). Further, we used the coupled 

CAM2/CLM2 to examine emissivity impact in a coupled climate system. Although the 

absolute values of simulated downward and upward longwave radiation are questionable, 

partly due to the problematic clouds parameterization in the GCM, the net longwave 

radiation is much more reliable.  

 

4. Results  

4.1. Satellite observed emissivity 

Figure 4 compares the geographic distribution of ε in January 2003 and July 2001. In 

both seasons, Saharan deserts have meaningfully lower ε, with most in ranges 0.88-0.92. 

In addition, seasonal variations are evident. For example, in the Saharan deserts, ε can be 

as low as 0.90 in January and to 0.93 in July, with several pixels having extreme low 

values of 0.75 (Nevertheless, this low values might be retrieval uncertainty, Wan 

personal communication 2004). This may result from the changes of surface wetness or 

vegetation conditions. Most rainfall in the Sahara occurs from December through March, 

so in January the soil is relatively wet compared to June through August. In January, low 

ε (0.94-0.96) occurs over Eurasia high latitudes, due to the low LAI over forests there. 
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Australia also shows low ε, about 0.90-0.96 all year. The dependence of ε on LAI 

vegetation density and species is also evident. For the Boreal forest, the ε ranges from 

0.92-0.97 between spring and autumn (not shown). 

Due to some retrieval problems for January and July, winter and summer ε data are not 

always reliable at this point, but better data will be available in the near future. However, 

the general understanding based on MODIS is that, for vegetated areas, winter has a 

lower ε than summer due to the growth of vegetation as bare soils have lower ε than 

vegetation.  

Figure 5 shows the ε, skin temperature, and upward longwave radiation along the latitude 

of New York (~42°N) across North America for July 2001. Emissivity does not depend 

on the object’s temperature but varies with the surface land cover. Closely similar shapes 

are observed on upward longwave radiation and skin temperature, implying that, over 

mid-latitude vegetation areas, the skin temperature plays a more significant role in flux 

and radiation calculation than that of ε. This is easy to understand since according to the 

Stefan-Boltzmann law, upward longwave radiation depends on skin temperature in a 

power of 4.  

Figure 6 shows ε  for different land covers and corresponding histogram. Significant 

variations, ranging from 0.87 to 0.97 are observed for bare soil (Fig. 6c), with about 17% 

peak at 0.93 and 12% at 0.95 (Fig. 6d). Such large variations are partly due to the 
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underlying soil conditions and partly due to the growing state of sparse vegetation. 

Interestingly, the minimum ε is observed at mid-latitude Northern Hemisphere desert 

areas (30°N), with values of 0.86. For comparison, the range of ε for mixed forest (Fig. 

6e) is much more moderate than that of bare soil, with the maximum ε as 0.98 and lower 

limit as 0.93. Its histogram has evident peaks at 0.95 and 0.96 above 60% and small 

percentage at other values. Higher and lower values are observed, but rarely, and are 

considered as contamination from other surface types. Similar ranges are observed on 

grasslands (Fig. 6a,b). This agrees with the current understanding that ε varies little over 

vegetated areas. Fig. 6g-h are for urban areas. Due to the much smaller portion of city 

numbers over the globe, city has ε ranging from 0.90 to 0.96, regardless of some extreme 

changes above or below this range. The peak percentage of city is at 0.945-0.955. 

Figure 7 shows two samples for snow spectral ε. Snow ε varies with snow surface 

roughness, snow water content, and snow particle size. An overall value of 0.99 is 

observed for infrared wavelength, suggesting the broadband ε is close to 0.99. 

Canopy ε is more uniform than soil ε. Figure 8 shows the LAI and ε relationship over the 

mid-eastern USA (27-55°N, 57-115°E), as shown in the map (Fig. 8a). The data is for 

July, from MODIS observations. In this month, LAI over the selected regions varied from 

0 to 6. Emissivity varied from 0.92 to 0.98. The mean ε for each LAI is about 0.96.  
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Standard deviation in Fig. 8c represents the spread of ε.  A noteworthy observation is 

that, for almost all LAI values, the standard deviations are as low as 0.005-0.01. 

The ε of a natural surface is function of vegetation density and structure, which can be 

partly represented in LAI. Figure 9 shows the variations of LAI for 40°S-40°N, along 

20°E longitude. There is a rough relation observed: the lowest LAI corresponds to the 

lowest. A decrease in LAI from 5°N-16°N corresponds to a decrease in ε from 0.97 to 

0.92. The lowest values of ε occur in 15-30°N desert regions, where LAI is not defined--

the vegetation barely exists. The correlation coefficient between LAI and ε is 0.67. It 

appears that that the region from 35°S to about 17°S is barren, yet it seems to have a high 

emissivity (0.955-0.972), this is because that vegetation there is small in LAI but still has 

shrub structure. Further, the region from 17°S to 8°S has small LAI values similar to 

those for 10°N to 16°N, but emissivities are quite different for the two regions. This may 

be because the structure of vegetation there are different, and LAI is not the best variable 

to represent vegetation structure.    

4.2 Emissivity impacts on land surface modeling 

Sensitivity Results from the Offline Land Surface Model  

For snow-free grids, CLM2 has bare soil emissivity and canopy emissivity. Since canopy 

emissivity doesn’t vary much, here we focus on examining the impacts of soil emissivity 

using offline CLM2. The control run uses default ε (0.96 for bare soil, 0.97 for 



 21

vegetation. Note in these experiments,  we set 0.97 for vegetation-covered regions.) The 

sensitivity run uses MODIS-observed typically emissivity 0.903 for bare soil (namely, 

0.904). Figure 10 is the global map of the ground temperature difference between control 

run and sensitivity run for one day in January. Changes are most significant over desert 

areas, consistent with our previous theoretical analysis. In general, with soil emissivity 

set as 0.90, the modeled ground temperature increases about 0.5-1°C with the maxima 

increase at the Sahara and its nearby regions. Meanwhile, the difference of 2m surface air 

temperature exhibits changes similar to those noticed over desert areas but with relatively 

small changes in magnitude, due to the delay of atmosphere response to surface energy 

input (not shown). 

Figure 11 is the difference of SH, sensitivity run minus control run. Again, similar 

changes are noticed over desert areas with flux increases up to 5Wm-2 for Saharan 

regions, due to the increase of ground temperature. Many other regions over the globe 

have opposite change, namely a decrease  in SH. Figure 12 shows the changes in upward 

LW. Again, the largest changes are observed over Saharan desert regions, with 1-5Wm-2. 

Other regions such as Australia, Southwest of USA, south part of Africa, and east Asia 

around 50°N, 120°E have similar changes.  Although the magnitude of SH and LW 

change are relatively small (<5Wm-2), it is annual mean and instantaneous value can be 

                                                 
3 We also conducted sensitivity runs by setting soil emissivity as 0.86, 0.92 and 0.94. The patterns of the 
impact are similar as presented here, with the magnitude differing a little. 
4  
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much higher. Therefore, we need to examine the diurnal variations and seasonality of this 

error. More importantly, we need to examine the error in a real surface-atmosphere 

climate system using a coupled GCM.  

Since the largest impacts of ε are over desert areas, we conducted further model 

sensitivity studies over one of these areas: Tucson, Arizona, USA (~30°N, 112°W). The 

atmospheric input is based on observations. The control run uses the default emissivity of 

CLM (0.96), and the sensitivity run keeps everything the same as the control run except 

for setting soil emissivity as 0.90, which is the observed typical value for soil there. The 

runs start at Julian day 132, 1993, with output every 20 minutes and averaged to daily 

mean (as presented here).The comparison shows that skin temperature with ε = 0.90 is 

lower than that of ε = 0.96, with the difference in general as -4°C (Fig. 12 a). During 

some daytime periods, the difference can be as high as 10K (can see from 20-minute 

output). At nighttime, the difference is little. Similarly, sensible and latent heat flux 

changes between control and sensitivity runs are also very large, 10 Wm-2 to as high as 

50Wm-2 (Figure 12 b and c). Furthermore, the changes of latent heat flux can be negative. 

It seems that the impact of ε on sensible heat flux is larger than it is on latent heat flux 

since the soil moisture is very low.  

The Tucson study (Figure 13) is  more reliable as the atmosphere forcing data in this case 

are the real observations,  and thus the magnitude and sign were reliable. By contrast, in 

the offline CLM sensitivity study (Fig. 10), the atmosphere forcing was from the NCEP 
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reanalysis, which has reported problem in their surface wind and surface air temperature 

(Trenberth 2002, personal communicaition). Another evidence is that Figure 13 from the 

coupled CAM2/CLM2 also shows that current high-constant emissivity induces warm 

bias at surface, which is consistent with Figure 13 but not with Figure 10.  Nevertheless, 

we still need to keep offline CLM study here to show that the land model by itself is 

sensitive to the emissivity.  

 

Results from Coupled GCM 

In a coupled climate system, the uncertainties and impacts of ε may propagate into the 

atmosphere and the atmosphere noise may enhance or reduce ε impact on surface. 

Therefore, it is interesting to study the ε effects in the land-atmosphere climate system 

using GCM. We conduct a series of sensitivity runs using NCAR CAM2/CLM2. To 

avoid spin-up, we use NCAR specifically recommended initial condition and boundary 

condition files for the land surface model. Similar to offline runs, the control run set ε as 

default values, and the sensitivity run sets the soil ε at 0.90, and canopy emissivity at 

0.97. Both control and sensitivity cases run the model for a short time. Running the 

model for a short time is based on two considerations: first, since in the two runs only ε is 

changed and any other condition is the same, the differences between the two runs are 

caused by the ε impacts; second, we noticed that after a long running time, the model 

output became quite noisy. This may be due to the atmosphere model’s noise being 

transported into model outputs (Dickinson, personal communication, 2003).  
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Figures 14a and b show the global distribution of surface air temperature. The model 

gives reasonable simulation for this variable. Figures 14c and d show the ε impacts 

evident over desert and semi-desert regions. A decrease of ε causes a decrease of surface 

air temperature. Namely, current high-constant ε results in warm bias over desert regions 

on surface air temperature field, which can be as high as 1.5°C over Saharan regions. By 

comparson, emissivity (ε) impact on skin temperature seems to be smaller than its impact 

on surface air temperature. Figure 15 shows skin temperature decreases as much as 1-

1.5°C over certain desert regions of the southwest USA, Eurasia, Australia, and Sahara. 

The warming bias at surface skin and  air levels imply an enhanced sensible heat flux 

from surface to air. Nevertheless, we notice that over certain small regions, the ε impacts 

are opposite to the rest of the land regions, such as 0°N, 20°E, where the control case has 

lower air temperature than the sensitivity case, resulting in a negative value in Fig. 15a. 

Nevertheless, such negative values are less significant on Fig. 14b, implying that ε 

impacts on this region is relatively weak, so that the signs of the impact do not always 

remain evident. 

5. Uncertainties and Discussions 

Broadband emissivities have uncertainties stemmed from MODIS spectral emissivity ελ 

as well as the conversion equation used to calculate broadband ε from ελ. As previously 

reported, over certain areas of South America and tropical Africa, cloud cover results in 



 25

missing ε. It is also questionable over certain Saharan areas, where evident ε changes (3-

5%) from January to July occur. Whether such large changes are due to the seasonality of 

soil wetness or due to retrieval problems is unknown. Nevertheless, in general, MODIS ε 

shows encouraging accuracy in terms of geographic distribution and inter-annual 

variations (Wan, personal communication, 2003). In addition, the regression equations 

used to convert MODIS ελ into broadband ε give a statistical average for ε. However, our 

research shows that uncertainty induced by the regression approach is less than 1%. 

From a land surface modeling perspective, the importance of ε has been ignored so far. 

Compared with surface albedo, which determines the net surface solar radiation, ε may be 

less critical in the surface energy budget. But it is very important over arid and semi-arid 

areas and at least should be taken into account there. By changing net longwave radiation 

from that which was supposed to be from blackbody, ε affects skin temperature, sensible, 

and latent heat flux simulations. MODIS global ε observations show great value for use 

in land surface models.  

Optimally, use of MODIS observations, or other remotely sensed ε information such as 

those from the ASTER in land surface models is a continuing task. Two approaches are 

practical: one is to use a look-up table to show ε variations as a function of latitude, 

season, and land cover, and then to parameterize ε in the model; another is to directly use 

MODIS ε observations into the model to replace current prescribed, unrealistic values. 
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Unfortunately, scaling up ε observations from MODIS fine resolution into the model grid 

cell requires more research. Because it is difficult to accurately measure ε, and because ε 

over some biologically distinct cover types are nearly the same, it may be adequate to use 

single values for each discrete land-cover type to represent ε in a GCM rather than 

directly input satellite global or regional observations into a model. 

Inconsistencies exist in placing satellite-based ε into a land surface model. One is that 

satellites can only measure spectral band ελ; therefore, satellite data need to be converted 

into broadband. We recommend a  regression equation approach in this paper. Another 

inconsistency is that over partially vegetation-covered regions, the satellite-measured ε, 

even at a resolution as fine as 1km, is a combination of soil and vegetation emissivities. 

How to interpret this combined information into a model’s canopy and ground ε is a 

question that needs to be addressed.  

The ε impacts presented here are from one model. It is valuable to re-evaluate these 

impacts using other models and to examine to what extent these impacts are valid. Before 

a model can be used to examine ε impacts, however, the formulations of land surface 

need to be carefully checked, since some models derive the land formulations by setting ε 

as a unit for simplification and ignore certain terms as discussed in Deardoff (1976). Such 

neglect will cause the ε to have a misleading effect. 
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 Figure Captions 
Figure 1 (a). NCEP/NCAR reanalysis for July 2001, surface net longwave 

radiation. (b) Same as Fig.1a, but for November 2001. (c) Same as Fig.1a, but for 

annual mean for year 2001. 

Figure 2: Lab measured soil emissivity. Data were obtained in June 2002, from Z. Wan’s 

webpage with permission, http://www.icess.ucsb.edu/modis/EMIS/html/em.html. 

Figure 3: (a). MODIS broadband emissivity for January 2003. The broadband 

emissivities are derived from the MODIS spectral band emissivities using 

regression-equation-based MODTRAN simulation. The resolution of original 

MODIS emissivity data is 1km and here is averaged to T42 resolution. (b) Same 

as Fig. 3a, but for July 2001. 

Figure 4: Examination of 3-band calculated broadband emissivity versus 7 MODIS band 

calculated broadband emissivity. 

Figure 5: Emissivity, upward longwave radiation, and skin temperature for latitude 42°N. 

Data is from MDOIS observation. Spatial data resolution is 5km. 

Figure 6: (a). All grassland pixels over the globe from MODIS. The emissivity values in 

the V4 MODIS Land-Surface Temperature/Emissivity product (MOD11B1) at 

5km sinusoidal grids. The x-direction is latitude but in ISIN projection (i.e., 0 is 

90N, the 4380 is 90S, 2190 is equator). (b) is the corresponding histogram in 

percentage for Grassland based on the data in (a). (c) is for barren and sparsely 

vegetated areas, namely MODIS land cover type16. (d) is the histogram based on 
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( c). (e) is for mixed forest (MODIS land cover type 5); and (f) is the histogram 

based on (e). (g) is for urban areas; and (h) is the histogram based on (g). 

Figure 7: Samples of snow spectral emissivity. Data is copied from Wan’s emissivity lab 

with permission in 2002. 

Figure 8: The relationship between LAI and emissivity. (a) The map shows the study 

regions, and (b) is the LAI vs. emissivity; (c) is the standard deviation of 

emissivity for each LAI value. 

Figure 9: LAI and emissivity relationship for 40°N-40°S, and 20°E. The open circle is 

LAI and dotted line is for emissivity. The scale of emissivity is (emissivity *10). 

Figure 10: Offline CLM simulated difference between control run (ε = 0.96 as default) 

and sensitivity run of soil emissivity as 0.90, for ground temperature. The data is 

for daily averages of January 1998. Unit is Kelvin. 

Figure 11: Same as Fig. 9 except for sensible heat flux. Unit is Wm-2. 

Figure 12: Same as Fig. 9 but for net longwave radiation. Unit is Wm-2. 

Figure 13: Offline CLM simulations for Tucson, 1993. Presented are difference between 

the run with emissivity settled as the observed value (0.90) and the run with the 

default emissivity (0.96). a) is for skin temperature, (b) for sensible heat flux, and 

(c) for latent heat flux from surface to air. 
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Figure 14: Emissivity impacts in the coupled model CAM2/CLM2: (a) control run of one 

day daily averaged surface air temperature; (b) control run of another daily 

averaged surface air temperature; (c) emissivity impact on surface air 

temperature, control run minus sensitivity run; (d) the same as (c) but for another 

day. 

Figure 15: Coupled CAM2/CLM2 simulated emissivity impact on surface temperature 

fro two random days of September. The difference is control run minus sensitivity 

run. The control run uses CLM default soil emissivity (ε=0.96), and sensitivity run 

uses satellite observed emissivity at T42 resolution. Unit is Kelvin. 
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Fig. 1a. NCEP/NCAR reanalysis for July 2001, surface net longwave radiation. 
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Fig. 1b Same as Fig.1a, but for November 2001. 
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Fig.1c Same as Fig.1a, but for annual mean for year 2001. 
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Figure 2: Lab measured soil emissivity. Data were obtained from Z. Wan’s webpage in 
2002 with permission, http://www.icess.ucsb.edu/modis/EMIS/html/em.html. 
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Fig3a. MODIS broadband emissivity for January 2003. The broadband emissivities are 
derived from the MODIS spectral band emissivities using regression-equation-based 
MODTRAN simulation. The resolution of original MODIS emissivity data is 1km and 
here is averaged to T42 resolution. 
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Fig. 3b Same as Fig. 3a, but for July 2001. 
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Figure 4: Examination of 3-band calculated broadband emissivity versus 7 MODIS band 
calculated broadband emissivity. 
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Figure 5: Emissivity, upward longwave radiation, and skin temperature for latitude 42°N. 
Data is from MDOIS observation. Spatial data resolution is 5km. 
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a)  

b)  
Figure 6a. All grassland pixels over the globe from MODIS. The emissivity values in the 
V4 MODIS Land-Surface Temperature/Emissivity product (MOD11B1) at 5km 
sinusoidal grids. The x-direction is latitude but in ISIN projection (i.e., 0 is 90ºN, the 
4380 is 90ºS, 2190 is equator). (b) is the corresponding histogram in percentage for 
Grassland based on the data in (a). 
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( c)   
 

 
 (d)  
 
 
Fig. 6c: For barren and sparsely vegetated areas, namely MODIS land cover type16. (d) 
is the histogram based on ( c). 
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(e)  
 

(f)     
Fig. 6e. For mixed forest (MODIS land cover type 5); and (f) is the histogram based on e. 
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(g)  
 

 
(h) 
Fig.6g: Urban areas; and (h) is the histogram based on (g). 
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Figure 7: Samples of snow spectral emissivity. Data is copied from Wan’s emissivity lab 
in 2002 with permission. 
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Figure 8: The relationship between LAI and emissivity. (a) The map shows the study 
regions, and (b) is the LAI vs. emissivity; (c) is the standard deviation of emissivity for 
each LAI value. 
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Figure 9: LAI and emissivity relationship for 40°N-40°S, and 20°E. The open circle is 
LAI and dotted line is for emissivity. The scale of emissivity is (emissivity *10).



 49

 

 

 

 

Figure 10: Offline CLM simulated difference between control run (ε = 0.96 as default) 
and sensitivity run of soil emissivity as 0.90, for ground temperature. The data is for daily 
averages of January 1998. Unit is Kelvin. 
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Figure 11: Same as Fig. 9 except for sensible heat flux. Unit is Wm-2. 
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Figure 12: Same as Fig. 9 but for net longwave radiation. Unit is Wm-2. 
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Figure 13: Offline CLM simulations for Tucson, 1993. Presented are difference between 
the run with emissivity settled as the observed value (0.90) and the run with the default 
emissivity (0.96). a) is for skin temperature, (b) for sensible heat flux, and (c) for latent 
heat flux from surface to air. 
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(a)(b) 
c)(d) 
Figure 14: Emissivity impacts in the coupled model CAM2/CLM2: (a) control run of one 
day daily averaged surface air temperature; (b) control run of another daily averaged 
surface air temperature; (c) emissivity impact on surface air temperature, control run 
minus sensitivity run; (d) the same as (c) but for another day.
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Figure 15: Coupled CAM2/CLM2 simulated emissivity impact on surface temperature 
fro two random days of September. The difference is control run minus sensitivity run. 
The control run uses CLM default soil emissivity (ε=0.96), and sensitivity run uses 
satellite observed emissivity at T42 resolution. Unit is Kelvin. 
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Table 1: Emissivity table of some common materials.  This is not a comprehensive list 

and should be taken as a reference only. (Copied from http://www.electro-optical.com/) 

 

Material ε 

Aluminum foil  0.04
Asbestos board 0.96
Asbestos paper 0.93
Asphalt (paving) 0.97
Brass (hard rolled - polished w/lines) 0.04
          (some what attacked) 0.04
Brick (red - rough) 0.93
Brick (silica - unglazed rough) 0.80
Carbon (T - carbon 0.9% ash) 0.81
Concrete 0.94
Copper (plate heavily oxidized) 0.78
Frozen soil 0.93
Glass (smooth) 0.94
Gold (pure highly polished) 0.02
Granite (polished) 0.85
Ice 0.97
Marble (light gray polished) 0.93
Paper (black tar) 0.93
Paper (white) 0.95
Plaster (white) 0.91
Plywood 0.96
Tin (bright tinned iron sheet) 0.04
Water 0.95
Wood (freshly planned) 0.90
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